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A stereoselective synthesis of (2)-tetrahydrolipstatin has
been accomplished utilizing olefin metathesis of an acrylate
ester as the key step.

Tetrahydrolipstatin 1, a member of the lipstatin class of b-
lactone microbial agents, is a potent and irreversible inhibitor of
pancreatic lipase.1 The lipase enzyme is responsible for the
digestion of fat in the diet of humans.2 The strained b-lactone
functionality of 1 is critical to its lipase inhibitory properties.
The inactivation mechanism involves an irreversible acylation
of the active site serine residue of pancreatic lipase by the b-
lactone moiety.3 Recent clinical studies have revealed that
treatment with 1 along with diet modifications have led to
sustained weight loss in humans.4 Indeed, Hoffman-La Roche
Laboratories have now introduced (2)-tetrahydrolipstatin
under the trade name Xenical® as an anti-obesity agent. The
important biological properties along with its unique structural
features have stimulated interest in the synthesis of 1 and its
structural variants.5 Herein we report an asymmetric synthesis
of (2)-tetrahydrolipstatin. The key synthetic strategy involves a
stereoselective construction of a syn-1,3-diol synthon by olefin
metathesis, stereoselective epoxidation and regioselective ep-
oxide reduction followed by its elaboration to 1.

As depicted in Scheme 1, we planned to construct the b-
lactone ring from the corresponding b-hydroxy acid derivative
2. The elaboration of the syn-1,3-diol functionality and
stereoselective introduction of the C-2 alkyl chain in 2 would be
achieved from the a,b-unsaturated d-lactone 3. The inter-
mediate 3 would be derived from ring-closing metathesis of the
corresponding acrylate ester 4. Recently, a number of conven-
ient syntheses of various a,b-unsaturated g- and d-lactones
have been reported involving ring closing metathesis of
acrylates utilizing Grubbs’ catalyst.6 The broad synthetic utility
of Grubbs’ catalyst is now well established.7 The key starting
material, homoallylic alcohol 5 was prepared in multigram
quantities by Keck’s enantioselective allylation of dodecanal
employing a catalytic amount (10 mol%) of (R)-BINOL and
Ti(OPri)4 to furnish 5 in 90% yield.8 The optical purity of the
alcohol 5 [92% ee, [a]D

23
26.3 (c 1.23, CHCl3)] was obtained by

formation of the Mosher ester and 19F NMR analysis.9 Reaction
of 5 with acryloyl chloride (1.2 equiv.) and Et3N (3 equiv.) in

the presence of a catalytic amount of DMAP in CH2Cl2
provided the acrylate ester 4 in 91% yield after silica gel
chromatography (Scheme 2). Olefin metathesis of 4 with
commercially available Grubbs’ catalyst (10 mol%) in the
presence of Ti(OPri)4 (0.3 equiv.) in refluxing CH2Cl2 (0.007 M
solution) for 15 h afforded the a,b-unsaturated d-lactone 3 in
93% yield. Consistent with our earlier report, exposure of
acrylate ester 4 to Grubbs’ catalyst (10 mol%) in CH2Cl2 for 15
h in the absence of Ti(OPri)4 resulted in low conversion of
lactone 3 (50% by 1H NMR) with a substantial amount of
unreacted starting material remaining.6b Epoxidation of lactone
3 was carried out with alkaline H2O2 in MeOH at 23 °C for 1 h.
Acidification, extractive work-up followed by azeotropic
removal of the water by heating in benzene furnished the
epoxide 6 as a single isomer. Epoxidation of 3 proceeded
stereoselectively from the less hindered b-face.10 Exposure of
epoxide 6 to PhSeSePh and NaBH4 in PriOH at 0 °C in the
presence of AcOH resulted in regioselective reduction of the
epoxide to afford the b-hydroxy-lactone 7 in 83% yield (from 3)
after silica gel chromatography.11 Thus, the sequence of
reactions involving olefin metathesis, stereoselective epoxida-
tion and regioselective epoxide reduction constitute an effective
protocol for the syn-1,3-diol synthon 9. For introduction of the
C-2 alkyl chain, attempted direct alkylation of the b-hydroxy-
lactone 7 under a variety of reaction conditions was un-
successful. Therefore, the elaboration of the C-2 side chain was
carried out by an alternate route using Seebach’s asymmetric
alkylation of b-hydroxy esters.12

The b-hydroxy lactone 7 was first protected as a TBDMS
ether 8 by treatment with TBDMSCl and Pri

2NEt in DMF at

Scheme 1

Scheme 2 Reagents and conditions: i, CH2NCHCOCl, Et3N, DMAP, 23 °C
(91%); ii, (PCy3)2Cl2RuNCHPh (10 mol%), Ti(OPri)4 (0.3 equiv.), CH2Cl2,
40 °C (93%); iii, aq. NaOH, H2O2, 23 °C; iv, PhSeSePh, NaBH4, PriOH,
AcOH, 0 °C (83%); v, TBDMSCl, Pri

2NEt, DMF, 25 °C (98%).
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23 °C for 12 h.  Lactone 8 was converted to b-hydroxy ester 10
in a three step sequence involving (i) opening of the lactone ring
by exposure to Et3N in MeOH at 23 °C for 12 h, (ii) protection
of the resulting d-hydroxy methyl ester as THP ether, and (iii)
removal of the TBDMS group by treatment with Bu4NF in THF
in the presence of AcOH at 23 °C for 5 h (60% from 7). The C(2)
hexyl side chain was then introduced by an asymmetric
alkylation of the b-hydroxy ester 10 (Scheme 3). Thus, methyl
ester 10 was treated with LDA (2.2 equiv.) in the presence of
HMPA (5 equiv.) in THF at 278 °C and the reaction mixture
was warmed to 250 °C for 2 h. The resulting dianion was
cooled to 278 °C and reacted with hexyl iodide (2 equiv.) at
278 to 0 °C for 6 h to afford the alkylated product 11 in 85%
yield (based upon 30% recovery of starting material). The
removal of the THP ether group in 11 revealed excellent
diastereoselectivity (ratio 22+1 by 13C NMR).13 The ster-
eochemical course of such alkylation processes has been well-
established previously.12

Saponification of ester 11 with aqueous LiOH followed by
exposure of the resulting acid to PhSO2Cl in pyridine at 0 °C for
8 h, as described by Barbier and Schneider, afforded the b-
lactone 12 in 84% yield (from 11).5k The removal of the THP
group by treatment with PPTS in EtOH at reflux furnished the
(5S)-hydroxy b-lactone 13 [[a]D

23
214.4 (c 1.2, CHCl3)] as a

single isomer. Attempted esterification with N-formylleucine
under a variety of conditions failed to provide satisfactory
results. To complete the synthesis, N-formylleucine was
introduced by an alternate protocol as described by Uskokovic
et al.5g Esterification of 13 with Cbz-leu and DCC in the
presence of DMAP provided the Cbz derivative 14 in 95%
yield.14 Catalytic hydrogenation of 14 over 10% Pd-C followed
by N-formylation of the resulting amine with formic acetic

anhydride in THF at 23 °C for 1 h furnished the synthetic
(2)-tetrahydrolipstatin 1 [[a]D

23
233.8, (c 1.4, CHCl3); lit.,1

[a]D
23
234.45, (c 1, CHCl3)]. Spectral data (IR and 400 MHz 1H

NMR) for the synthetic tetrahydrolipstatin are identical to those
reported for the natural product.1

In summary, an asymmetric synthesis of (2)-tetrahydrolip-
statin has been accomplished. A number of key features of this
synthesis are noteworthy; a Keck enantioselective allylation of
dodecanal, olefin metathesis of an acrylate ester to an
unsaturated d-lactone, elaboration of this lactone to a syn-
1,3-diol synthon and Seebach’s asymmetric alkylation of a b-
hydroxy ester.
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Scheme 3 Reagents and conditions: i, Et3N, MeOH, 23 °C, 12 h (75%); ii,
DHP, PPTS, 8 h; iii, Bu4NF, THF, AcOH, 25 °C, 5 h (60% from 7); iv,
LDA, HMPA, C6H13I, THF, 278 to 0 °C, 6 h (70% conversion, 85%); v, aq.
LiOH, 25 °C, 12 h, H+; vi, PhSO2Cl, Py, 0 °C, 8 h (84% from 11); vii, PPTS,
EtOH, reflux, 3 h (90%); viii, Cbz-Leu, DCC, DMAP (95%); ix, H2, Pd-C,
12 h; x, AcOCHO, THF, 25 °C, (87%).
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